OPEN RISK ENGINE

Peter Caspers, Niall O'Sullivan, Roland Lichters

Quaternion Risk Management

QuantLib User Meeting, London, 12 July 2016

AGENDA]

Open Risk Engine Summary
QuantLib Extension Library
Data Library

Analytics Library

OPEN RISK ENGINE SUMMARY

OPEN RISK ENGINE ...

1. is a transparent platform for pricing and risk analysis, serves as

- benchmarking, validation, training, teaching reference
- extensible foundation for tailored risk solutions

2. extends QuantLib (simulation models, instruments, engines)

3. adds contemporary risk analytics and value adjustments

4. adds simple interfaces for trade/market data and system config
5. adds simple launchers in Excel, LibreOffice, Python, Jupyter

6. is free/open software, provided under the Modified BSD License

7. is sponsored by Quaternion Risk Management
(www.quaternion.com).

COMPONENTS

Basic Application/Launchers

Risk Analytics

QuantLib QL Extension

Interfaces and Data Management

Boost Libraries

TIMELINE]

Milestones

- Beta Release: 11 July 2016

- Release: September 2016

ANALYTICS

ORE provides
1. Portfolio pricing, cash flows, sensitivity analysis, stress testing

2. Derivative portfolio analytics based on Monte Carlo simulation

- Credit exposure evolution taking netting and collateral into
account (EE, EPE, EEPE, PFE) supporting regulatory capital charge
calculation under internal model methods

- Market risk measures (VaR, ES)

- Derivative value adjustments (CVA, DVA, FVA, COLVA)

3. Parametric (non-simulation) analytics for risk and capital

- Initial Margin methods to benchmark ISDA’s SIMM
- SA-CCR, the new standard method for derivatives capital

PRODUCTS

ORE’s initial product scope comprises Interest Rate and FX products

- Interest Rate Swaps

- Caps/Floors

- Swaptions

- Cross Currency Swaps
- FX Forwards

- FX Options

The simulation models applied in ORE are based on:
Modern Derivatives Pricing and Credit Exposure Analysis
Palgrave MacMillan 2015

SCOPE]

ORE comes with extensive tests, examples and documentation
- Test suites with good coverage from the start
- Various examples which demonstrate typical use cases
- Several ways to launch ORE and visualise results
- A detailed user guide covering examples and parametrisation

- Comprehensive source code documentation

ROADMAP

A series of further releases is scheduled, covering:
- Sensitivity analysis, stress testing capability
- Credit simulation, Credit Derivatives and Loan products
- Default risk modeling and credit portfolio analysis
- Inflation simulation and Inflation Derivatives
- Equity simulation, Equity Derivatives
- Commodity simulation, Commodity Derivatives

- Open Risk Engine Book

CONNECT]

Connect with ORE

- Follow us on Twitter @OpenRiskEngine

- Watch announcements on www.openriskengine.org

Once released:

- Fetch ORE from github.com/openriskengine
- Use ORE
- Share feedback

- Send pull requests

QUANTLIB EXTENSION LIBRARY

QUANTEXT - QUANTLIB EXTENSION LIBRARY ‘

QuantExt adds supplementary building blocks to QuantLib

- a cross asset model and associated pricing engines

- rate helpers for bootstrapping cross currency and tenor basis
curves

- a few instruments like currency swaps, basis swaps and average
OIS swaps

- additional currencies and indexes

STRUCTURE]

The directory structure is like in QuantLib

QuantExt / qle / cashflows
currencies
indexes
instruments
math
methods
models
pricingengines
processes
quotes
termstructures

QuantExt / test /

CODE STATISTICS]

Library Files | Lines of Code | Unit Test Cases
QuantLib ~ 2400 360k 646
QuantExt ~ 200 20k 36
OpenRiskEngineData ~ 160 20k 20
OpenRiskEngineAnalytics ~ 60 7k 21
Sum ~ 420 L7k 77

CROSSASSETMODEL

QuantExt provides an implementation of a cross asset model

- multi-Gaussian IR-FX (-INF-CR-EQ-COM)'

- exact discretization of the underlying stochastic process for
large step simulations

- utilizing Joshi’s Sobol Brownian bridge generator provided in
QuantLib’s market model implementation

- analytic vanilla option engines for fast calibration

- extensible - other models can be plugged in (Heston,
multifactor LGM, stochastic basis models, ...)

TINF, CR, EQ, COM will be part of later releases

TEST SUITE]

Extensive test suite, e.g. for the model part

- consistency with finite difference and Gaussian1D pricing
engines in QuantLib

- recovery of analytical moments by Euler Monte Carlo
- martingale property of deflated payoffs

- repricing of calibration baskets with Monte Carlo

QUANTLIB AS A BACKBONE FOR XVA SIMULATIONS]

QuantLib 1.8 can be used for efficient XVA simulations

- no modifications in QuantLib necessary - this is fantastic

- but we use workarounds at some places, which are efficient in
practice, but not clean

- in the following we derive proposals for future QuantLib
development from this

PROPOSAL #1 FLOATING TERMSTRUCTURES

We make extensive use of evaluation date shifts during simulation
- provide floating and fixed reference date term structures
consistently throughout the library

- expose TermStructure: :moving_ to make fixed and floating
term structures distinguishable during run time?

- add floating lags for NPV and settlement date parameters in
pricing engines, for example and notably in the
DiscountingSwapEngine

- provide fixed and floating bootstrap helpers

Znote that in addition there are the term structures that manage their reference
date themselves

PROPOSAL #2 QUOTES]

Quotes are the central tool to apply scenarios to term structures
during simulation

- support quotes in ExchangeRateManager

- provide quote based constructors in term structures
consistently

PROPOSAL #3 OBSERVABILITY

Observability is used to propagate quote updates to term structures
and instruments during simulation

- a naive use yields correct results, but may be slow

- deferral of notifications® does not seem to speed up our
simulation or even slows it down in cases

- our workarounds are
- disable Notifications and manually update term structures and
instruments
- unregister coupons from evaluation date observation

- goal: can we tape the notification graph on a small subset of
simulation paths (or one path) and derive a minimal set of
objects that needs to be updated from that?

3introduced in QuantLib 1.8

PROPOSAL #4 SIMULATED FIXINGS

During simulation, future fixings have to be generated and published
- required fixings are implicitly known from pricing on the original
evaluation date.

- no global notification of all observers* necessary when adding a
simulated fixing

- pathwise generation of future fixings and publishing them can
be automated by an extension of Index

- no need for changes in pricing engines

- (almost) zero overhead when simulated fixings mode is disabled

“typically floating rate coupons

DATA LIBRARY

DATA LIBRARY

- OpenRiskEngineData is a C++11 library that manages market and
trade data

- Configured via APl or XML (using RapidXML)

- Flexible curve bootstrap can be configured for Libor, OIS, XOIS,
etc leaving the choice to users

- Curve configuration defined for all market curves (option
surfaces/cubes) which maps to QL TermStructures

- Lightweight portfolio data model

- Again trade XML maps to QL Instruments

23

XML EXAMPLE

<Trade id="123456">
<TradeType>Swap</TradeType> <ScheduleData>
<Envelope> <Rules>
<CounterParty>CP_A</CounterParty> <StartDate>20120530</StartDate>
<NettingSetId>CP_A_NS_1</NettingSetId> <EndDate>20160704</EndDate>

</Envelope> <Tenor>1Y</Tenor>
<SwapData> <Calendar>TARGET</Calendar>
<LegData> <Convention>
<LegType>Fixed</LegType> Following
<Payer>true</Payer> </Convention>
<Currency>EUR</Currency> <TermConvention>
<Notionals> Following
<Notional>70000000</Notional> </TermConvention>
</Notionals> <Rule>Forward</Rule>
<DayCounter>30/360</DayCounter> <EndOfMonth/>

<PaymentConvention> <FirstDate>20120704</FirstDate>
Following <LastDate/>
</PaymentConvention> </Rules>
<FixedLegData> </ScheduleData>
<Rates> </LegData>
<Rate>0.035000</Rate> </SwapData>
</Rates> </Trade>

</FixedLegData>

2%

MARKET AND ENGINEFACTORY

- Interface openriskengine: :data: :Market defines a
complete set of all the market instruments and curves (as
Handles to QL objects) needed for pricing

- class Market {
fl oo
virtual Handle<YieldTermStructure> discountCurve(const string& ccy) = 0;
virtual Handle<IborIndex> iborIndex(const string& indexName) = 0
virtual Handle<Quote> fxSpot(const string& ccypair) = 0;

}

- TodaysMarket implements this interface using curves
bootstrapped as on previous slide

- openriskengine::data::EngineFactory takes a Market
and generates QuantLib:PricingEngines for the portfolio (Actual
engine choice and parameters are configurable via API/XML)

- TodaysMarket + EngineFactory + Portfolio = TO pricing

25

ANALYTICS LIBRARY

ANALYTICS LIBRARY

- OpenRiskEngineAnalytics is a smaller library built on top of
QuantLib, QuantExt and OpenRiskEngineData.

- Provides a framework for Monte-Carlo simulation of future
NPVs, aggregation and (in the future) market risk sensitivities.

- We use the following common definitions:

- DateGrid a set of future dates we wish to calculate exposure on

- Cube the 3-D matrix of trade NPVs for the portfolio on each path
and each date in the date grid

- Scenario A set of simulated market data points represented as a
set of QuantLib: :Real values

- ScenarioGenerator A class that combines a model, date grid and
PRNG to generate Scenarios.

- Scenarios can be generated by a CrossAssetModel, a Real world
model or a set of defined sensitivities.

SCENARIOSIMMARKET

-analytics::ScenarioSimMarket is a concrete
implementation of the data: :Market interface that is Quote
based.

- The method ScenarioSimMarket: :update() retrieves a
Scenario from a ScenarioGenerator and updates the underlying
Quotes.

- When a portfolio’s EngineFactory uses this Market, then all
Instruments will be directly linked to the Market's
TermStrutures and Quotes

- Therefore, to price under a scenario we simply call update()
and then loop over the portfolio calling Instrument: :NPV()

- This relies heavily on QuantLib’s Lazy Object and Observer
patterns.

28

LOOP ORDER

- To compute a Cube, we essentially have three nested loops

- Innermost loop is over portfolio = two options remain

- Option 1 - Outer Loop over Dates, then Paths
Pro Minimise date changes - Rebuild static TermStructures at each
date and so can use both floating or fixed reference dates.
Con Need to cache scenarios, creates a memory constraint on the
number of paths we can run
Con Fixings are difficult to do properly
Con Need to maintain state for path dependant trades

- Option 2 - Outer Loop over Path
Pro Can price on a path and maintain fixings easily
Pro Can stream scenarios, no memory constraints
Con All TermStructures must have a floating reference date
Con Need to do multiple asof date changes, not cheap

29

OBSERVATIONS

- Settings::evaluationDate is observed a lot.
- Analysis from an early version of OpenRiskEngine:

- 100 Fixed vs. Floating Swaps, Average maturity = 16.2 years

- Total of 3,778 Floating Rate Coupons

- Single call to Settings::instance().evaluationDate() =
d; takes 1,500 microseconds.

- 1,000 samples and 80 dates = 120 seconds.

- Update time is all notification, does not change even at later grid
dates when trades are expired.

- evaluationDate is observed by 4,915 observers.

- Total number of notifications is 34,848

- Each notification is fast (we are doing 24 per microsecond).

- However total number is massive (over 2.7 Billion)

- Deepest chain is of depth 6

30

OBSERVATION - SINGLE SWAP

- There is a lot of overlap in the notification chain.
- Consider a simple 3 coupon swap.

Handle<Discount Curve>

Pricing Engine
Discount Curve

Evaluation Date Swap Instrument :

Ibor Curve

Coupom
Handle<lbor Curve> ’ Coupon 2
Ibor Index 5 Coupon 3

- Swap is notified 7 times (2n + 1) of a change in the eval date

OBSERVATION - SOLUTIONS

All of the following solutions are available in OpenRiskEngine

1. Do nothing.
- everything is working as designed and all values are correct
- it can be slow
2. Minimise notification chain
- Reduce the notification chain by careful selection or
implementation of market data objects
- remove duplication by unregistering connected observers with
common observables (e.g. floating rate coupon and index)
3. Disable all notifications
- Use ObservableSettings::disableUpdates(false);
- Disable notifications and maintain a separate list of observers
that require explicit notification
- Notification still preformed, but the large chains do not kick in.
4. Defer all notifications
- Use ObservableSettings::disableUpdates(true);
- Defer notifications until all market quotes and fixings have been

updated. This is generally slower than (1)!
32

OBSERVATION - EXAMPLES]

- Swap exposure benchmark test runs a portfolio of vanilla swaps
over 1,000 samples and 80 dates.

- Cube generation time in seconds

Mode 1 Swap | 100 Swaps
None 12.64 320.99
Minimise 12.46 22791
Disable 11.4 229.45
Defer 13.32 349.07

33}

QUESTIONS?

	Open Risk Engine Summary
	QuantLib Extension Library
	Data Library
	Analytics Library

