
QuantLibAdjoint News

Alexander Sokol
Head of Quant Research, CompatibL

*TapeScript and QuantLibAdjoint are open source
and will always remain free for commercial use
Download from http://github.com/compatibl

QuantLib User Conference, London, July 12, 2016

Alexander Sokol QuantLibAdjoint News 1 / 23

http://github.com/compatibl

1. Overview of QuantLibAdjoint

2. New features in QuantLibAdjoint 2.0

3. Vector AAD in TapeScript

4. Summary

Alexander Sokol QuantLibAdjoint News 2 / 23

1. Overview of QuantLibAdjoint

1. Overview of QuantLibAdjoint
2. New features in QuantLibAdjoint 2.0
3. Vector AAD in TapeScript
4. Summary

Alexander Sokol QuantLibAdjoint News 3 / 23

1. Overview of QuantLibAdjoint

Possible ways to implement AAD

1 Hand-coding refers to the approach of manually adding AAD logic directly to
the source code.

• The speaker believes that hand-coding and hand-validating AAD is a Herculean task
that would take unacceptably long, especially when also having to merge with the
evolving code base.

2 Automated source transformation (e.g. Tapenade) refers to the approach
where AAD logic is also inserted directly into the code, but unlike with
hand-coding, it is done by an automated source code transformation.

• Source transformation is not as labor intensive than hand-coding, however it is still
mostly suitable for smaller, research-style code and will not work well for a large
scale, modular quantitative analytics library with high degree of encapsulation via
interfaces

3 Operator overloading (e.g. CppAD, ADOL-C, ADEPT, TapeScript) refers to the
approach where the native double is replaced by a class with overloaded
arithmetic operators.

• The only approach that preserves the original code (except for defining Real as
tdouble)

Alexander Sokol QuantLibAdjoint News 4 / 23

1. Overview of QuantLibAdjoint

Using operator overloading approach in QuantLib

• Operator overloading approach in QuantLib works by defining Real as tdouble

• Back in year 2000, Luigi Ballabio and Ferdinando Ametrano decided to use Real
instead of double throughout QuantLib to enable a compile time switch
between single and double precision

• 16 years later this helped avoid the global replacement of double in QuantLib
code to implement AAD

• By defining Real as tdouble, only 461 lines of the code had to be changed to
make QuantLib AAD-capable (see github.com/compatibl/QuantLibAdjoint)

• These 461 lines of code changes are already merged into QuantLib master

Alexander Sokol QuantLibAdjoint News 5 / 23

1. Overview of QuantLibAdjoint

Some of the changes in converting a QuantLib to AAD

Alexander Sokol QuantLibAdjoint News 6 / 23

1. Overview of QuantLibAdjoint

QuantLib pull request: 461 lines of code changed

Alexander Sokol QuantLibAdjoint News 7 / 23

1. Overview of QuantLibAdjoint

GitHub page with converted QuantLib and TapeScript

Alexander Sokol QuantLibAdjoint News 8 / 23

2. New features in QuantLibAdjoint 2.0

1. Overview of QuantLibAdjoint
2. New features in QuantLibAdjoint 2.0
3. Vector AAD in TapeScript
4. Summary

Alexander Sokol QuantLibAdjoint News 9 / 23

2. New features in QuantLibAdjoint 2.0

Using tcontext to register variables when the tape is
already running

• Traditional API for AAD requires that the entire calculation is formulated as a
function with all inputs in the beginning and all outputs at the end

• Most AAD libraries do not allow registering variables when the tape is already
being recorded

• However in production quant libraries, this is exactly what we need

• For example, we want to get rate quotes from the database, register, build the
curve, then get vol quotes from the database, register, calibrate the model,
etc.

• The tcontext API makes it possible to do this, minimizing the changes to the
existing code

DEMO OF REGISTERING VARIABLES WHEN THE TAPE IS ALREADY RUNNING

Alexander Sokol QuantLibAdjoint News 10 / 23

2. New features in QuantLibAdjoint 2.0

Selectively excluding classes from AAD

• Peter Caspers converted part of QuantLib to AAD using a template-based
approach

• If each QuantLib class is converted into a template parametrized by either
double or the adjoint variable (e.g. tdouble), the overhead of tdouble is
avoided in classes where AAD is not needed

• However converting each QuantLib class into a template is a massive code
change, and will slow down the compilation/increase object code bloat.

• We developed an alternative way to selectively exclude classes from AAD,
based on using one of two different headers.

• One of the headers compiles code with tdouble, and the other with an inline
wrapper that has no performance overhead relative to double as it is optimized
away by the compiler.

DEMO OF SELECTIVE EXCLUSION OF CLASSES FROM AAD

Alexander Sokol QuantLibAdjoint News 11 / 23

3. Vector AAD in TapeScript

1. Overview of QuantLibAdjoint
2. New features in QuantLibAdjoint 2.0
3. Vector AAD in TapeScript
4. Summary

Alexander Sokol QuantLibAdjoint News 12 / 23

3. Vector AAD in TapeScript

Vector AAD

• The objective of Vector AAD is to reduce tape size and accelerate tape
recording

• With vector tape, a single tape slot (address) can refer to either a single
number or an array of numbers

• When using operator overloading approach, the AD variable holds a discriminated
union of a single number and an immutable array, and a single tape address.

• The calculation can begin and end as usual, with individual inputs (independent
variables) and outputs (dependent variables) being single numbers, not arrays.

• It is also possible to use array inputs and outputs. This is logically equivalent to
working with individual elements.

• In the middle of the calculation, if encountering a segment where the same set
of operations is performed for an array of values (e.g. Monte Carlo simulation),
the individual numbers are merged into a tarray and from this moment on they
have a shared tape

• Later, they can be split back into individual numbers for separate processing.
This splits the shared tape into branches.

Alexander Sokol QuantLibAdjoint News 13 / 23

3. Vector AAD in TapeScript

TapeScript API for Vector AAD

• The TapeScript Vector AD variable tobject holds a composite variable tvalue
instead of a single number, and also a single tape address.

• This composite variable (tvalue) is a discriminated union of a single number
(double) and an array of numbers (double[]). The array is immutable.

• The universal variable tobject can be converted to and from either tdouble or
an immutable vector variable, tarray.

• Conversion from tdouble[] to tarray is done via constructor

• Conversion from tarray to tdouble[] is done via method split()

Alexander Sokol QuantLibAdjoint News 14 / 23

3. Vector AAD in TapeScript

Vector Tape with TapeScript

Vector tape for y = 2x0 + x1:
Forward mode:

Op# Var# Op Operands Calculated
1 1 Init value = { 0.976, 1.86 } fwd[1] = { 2.06, 7.16 }
2 2 Init value = { 4.3, 6.89 } fwd[1] = { 0.898, 6.95 }
3 3 * 2 var#1 value = { 1.95, 3.71 } fwd[1] = { 4.11, 14.3 }
4 4 + var#3 var#2 value = { 6.26, 10.6 } fwd[1] = { 5.01, 21.3 }
5 End

Reverse mode:

Op# Var# Op Operands Calculated
4 4 + var#3 var#2 value = { 6.26, 10.6 } rev[1] = { -1.53, 2.47 }
3 3 * 2 var#1 value = { 1.95, 3.71 } rev[1] = { -1.53, 2.47 }
2 2 Init value = { 4.3, 6.89 } rev[1] = { -1.53, 2.47 }
1 1 Init value = { 0.976, 1.86 } rev[1] = { -3.05, 4.94 }
0 Begin

Alexander Sokol QuantLibAdjoint News 15 / 23

3. Vector AAD in TapeScript

The Same Calculation with Scalar Tape
This is the scalar tape for the same function: Forward mode:

Op# Var# Op Operands Calculated
1 1 Init value = 0.976 fwd[1] = 2.06
2 2 Init value = 1.86 fwd[1] = 7.16
3 3 Init value = 4.3 fwd[1] = 0.898
4 4 Init value = 6.89 fwd[1] = 6.95
5 5 * 2 var#1 value = 1.95 fwd[1] = 4.11
6 6 + var#5 var#3 value = 6.26 fwd[1] = 5.01
7 7 * 2 var#2 value = 3.71 fwd[1] = 14.3
8 8 + var#7 var#4 value = 10.6 fwd[1] = 21.3
9 End

Reverse mode:
Op# Var# Op Operands Calculated
8 8 + var#7 var#4 value = 10.6 rev[1] = 2.47
7 7 * 2 var#2 value = 3.71 rev[1] = 2.47
6 6 + var#5 var#3 value = 6.26 rev[1] = -1.53
5 5 * 2 var#1 value = 1.95 rev[1] = -1.53
4 4 Init value = 6.89 rev[1] = 2.47
3 3 Init value = 4.3 rev[1] = -1.53
2 2 Init value = 1.86 rev[1] = 4.94
1 1 Init value = 0.976 rev[1] = -3.05
0 Begin

Alexander Sokol QuantLibAdjoint News 16 / 23

3. Vector AAD in TapeScript

Tape size with Vector AAD vs. Scalar AAD

Vector Tape:
Monte Carlo Paths: 10,000
Tape size (bytes): 3,473

Scalar Tape:
Monte Carlo Paths: 10,000
Tape size (bytes): 9,364,122

Alexander Sokol QuantLibAdjoint News 17 / 23

3. Vector AAD in TapeScript

Performance when not recording the tape with Vector
AAD

Vector AD class wrapper has no measurable performance impact when not
recording the tape in the following two examples implemented with TapeScript,
because the array inside the composite variable is an array of native doubles that
the compiler can optimize

• Calculation of the dot product of two vectors (size 100,000,000)

Time for tarray 10,920 ticks
Time for double[] 10,795 ticks
Relative difference 1.1\%

• Calculation using special functions:

Time for tarray 14,820 ticks
Time for double[] 14,680 ticks
Relative difference 0.9\%

Alexander Sokol QuantLibAdjoint News 18 / 23

3. Vector AAD in TapeScript

Performance Improvement with Vector AAD

• As Peter Caspers observed during QuantLib User Meeting 2015, compiler does
less optimization with the AAD variable compared to native double

• The worst case cited in Peter’s presentation is x80 slowdown compared to
native double for a Bermudan swaption convolution engine

• Our testing shows that such slowdown is extremely rare in QuantLib, and
typically the overhead is between x2 and x10

• In the example with multiple lattice methods we have just seen, it is close to x5

• This means that typically you still win overall compared to bump and reprice if
you need more than 5-10 greeks

• It is enough to have a single curve with bucket sensitivities for AAD to win

• However even this moderate overhead can be reduced even further with Vector
AAD, as an additional welcome side effect to other advantages of Vector AAD

Alexander Sokol QuantLibAdjoint News 19 / 23

3. Vector AAD in TapeScript

Can we use Vector AAD in QuantLib?

• Vector AAD is effective in two cases:
1 When the same operation is applied to each element of an array, for example in

case of tree or Monte Carlo calculation with time slices
2 When atomics operating on vectors are available, e.g. for American Monte Carlo

• The part of QuantLib code where Vector AAD is used must be converted to a
new class RealArray instead of std::vector<Real>

• Properties of RealArray
1 Immutable, cannot change neither size or value
2 Construct RealArray from std::vector<Real>
3 Convert RealArray to std::vector<Real> using split() function

• When AAD is not used, the change from std::vector<Real> to RealArray will
slow down the original code somewhat due to additional deep copy operations
involved operations

• Using expression templates can help minimize the impact

• CompatibL plans to first use it for adding new Monte Carlo functionality to
QuantLib, and then retrofit it into the existing lattice code

• This feature will be in QuantLibAdjoint 3.0

Alexander Sokol QuantLibAdjoint News 20 / 23

4. Summary

1. Overview of QuantLibAdjoint
2. New features in QuantLibAdjoint 2.0
3. Vector AAD in TapeScript
4. Summary

Alexander Sokol QuantLibAdjoint News 21 / 23

4. Summary

How to download and compile QuantLibAdjoint

• Download QuantLibAdjoint from github.com/compatibl
• Note: Master branch runs with Visual Studio 2013 and 2015. Support for Visual

Studio 2012 and gcc is forthcoming.

• Compile and run test-suite and test-suite-adjoint
• Replace double with Real in your code

• A number of refactoring tools is available to do this automatically, but even a simple
global replacement in editor works surprisingly well if you are willing to tolerate
some mangling of comments

• Register your independent and dependent variables and calculate sensitivities

• Contact team@compatibl.com in case of any problems

Alexander Sokol QuantLibAdjoint News 22 / 23

4. Summary

Summary

• QuantLibAdjoint 1.0 is the stable release
• Implements Scalar AAD
• Already used in production by multiple firms
• High performance with minimal use of RAM for calculations not involving trees or

Monte Carlo

• QuantLibAdjoint 2.0 implements the following new features
• Registering variables when tape is being recorded (tcontext)
• Selective use of AAD variable without templates
• Supports Vector AAD mode with RealArray, however RealArray is not yet used as

this would require changes to core QuantLib that require QuantLib community
consensus

• TapeLib is a commercial extension of QuantLibAdjoint from CompatibL.
• Parallel recording and playback of the tape
• Serialization of tape and playback variables to disk
• Adjoint Profiler for analyzing performance bottlenecks
• Adjoint Pivot, an HTML5 front end for interactive drilldown from portfolio to trade

level sensitivities using on the fly AAD calculation

Contact haining@compatibl.com for the details about TapeLib

Alexander Sokol QuantLibAdjoint News 23 / 23

	Overview of QuantLibAdjoint
	New features in QuantLibAdjoint 2.0
	Vector AAD in TapeScript
	Summary

