
QL Integration into Scala and Excel

Martin Dietrich



E.ON Global Commodities

 Over 1000 professionals, active on over 20 exchanges in more than 40 

countries

 Over 1000 counterparties in more than 50 countries

 850,000 trades in 2011

 Market energy, mange commodity risk and provide asset optimization 

services for the E.ON Group and its third party customers

 Main trading activities: Power, Gas, Emissions, Oil, Coal, Storage

 Spot, physical forward, options, futures, spread, swaps

 Swaps, virtual storage, swing gas

 Physical coal, own fleet of vessels

2



What makes it special?

 Asset-backed trading

 Permanent obligation to mark and hedge E.ON‘s asset portfolio

 Physical delivery with hundreds of physical constraints in fuel supply and 

power generation

 Limited liquidity with a significant market share in physical positions

 Simple products like options and forwards

 Complex and structured products like VPP and Swing

3



Example: Swing Contract

 Periodic delivery within a given delivery period at a given strike price

 Buyer has the right to exercise nomination at short notice (day ahead)

 Min and max number of exercises

 Min and max volume per sub period (month)

 Min and max volume for the whole period (gas year)

 Coupled American style options – flexible but limited exercise

 Complex optimization problems solved by dynamic or linear programming

4



Why QuantLib

 Demand in financial and numerical open source library

 Advanced, mature and tested

 Not reimplementing pricing engines, volatility modelling, Brownian bridge 

and many more

5



Why not exclusively QuantLib

 Commodity markets are different

 Additional financial engineering requirements

 Want to leverage functional programming languages

 Access identical logic and underlying market data regardless of client

 Big data, half-hourly profiles or forward curves

 Interacting with pricing engines from ETRM, Excel or just a simple browser

 Access the power and performance of a grid from the desktop

 Agile development

6



Technology Stack

7



Development Dependencies

eet.apps.quantlib-swig

WebSocket

JSON

OS/Arch dependent dll

8



Why Excel-DNA

 Integrating .Net into Excel

 Packaging tool for script files and assemblies to generate a single XLL

 32/64-bit support

 Asynchronous non-blocking calls

 Task-based operations (.Net 4.0)

 Per-call WebSocket using WebSocket4Net

 Message transfer via JSON using Json.NET

 Automatically resizing the result range

9



10



11



Interacting with WebSockets

12



Why WebSockets

 Stateless protocol

 Real-time full-duplex communication (sending and receiving at a time)

 Alternative to long polling or Comet

 Less bandwith usage

 Initial HTTP request with an upgrade request to the WebSocket protocol

 Independent in and out streams

 No request/response cycle

13



Why favouring JavaScript Object Notation

 JSON is a text-based data format for data exchange

 Lightwight – no tags, no attributes, less bandwith-intensive

 Limited data types (strings, numerics, Booleans, arrays, objects, nulls)

 Java and .Net APIs at hand for (de)serialization

 Can be persisted in NoSQL databases like MongoDB

14



15



Continuous Integration – the Plugin

16



Continuous Integration – the Plugin

17



Continuous Integration – the Plugin

18



Why Play

 Full-stack web framework for scala

 Integrated HTTP server, build system and cache

 Asynchronous I/O

 Stateless web application

 Live code and configuration changes

 Remote debugging in single threaded environment

 Type safety

 Build-in support for JSON validation

 Build-in support for WebSockets

19



Exposing a WebSocket with Play

 Specifying the routes

 Exposing the WebSocket

20



Exposing QuantLib to Play

 SWIG

 Simplified Wrapper and Interface Generator

 Java extension to SWIG writes the Java Native Interface (JNI)

 SWIG wraps C++ code using Java proxy classes

 Embedded 32/64bit dll delivered with the jar file, extraction on the fly

 no need for a separate dll deployment

 QuantLib in a multi-threaded environment

 SWIG/QuantLib Objects are not shared between different threads

 Deregister observer during garbage collection via call back hook

 Thread local singleton pattern

21



Continuous Integration - QuantLib

22



Continuous Integration - QuantLib

23



Continuous Integration - SWIG

24



Continuous Integration - SWIG

25



Artifactory

 Central artifact repository for local and remote repositories

 Integrates with maven, ivy and NuGet

26



Debugging

 Start from VS in debug mode - debug your c# code

27



Debugging

 Run play in debug mode

 Attach remote debugger - debug your scala code

28



Hands-On

 Pricing a set of vanilla gas options from a spread sheet

 Sending a pricing request from a web browser

 Pricing a vanilla option from LexiFi

29



Conclusion

 QuantLib can be integrated into multi-language/architechture system

 High throughput

 Scalable with standard web components

 Continous Integraiton and TDD

 Central pricing server

30



Links and Tutorials

 Principles of Reactive Programming 

https://www.coursera.org/course/reactive

 Functional Programming Principles in Scala

https://www.coursera.org/course/progfun

31


