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E.ON Global Commodities

 Over 1000 professionals, active on over 20 exchanges in more than 40 

countries

 Over 1000 counterparties in more than 50 countries

 850,000 trades in 2011

 Market energy, mange commodity risk and provide asset optimization 

services for the E.ON Group and its third party customers

 Main trading activities: Power, Gas, Emissions, Oil, Coal, Storage

 Spot, physical forward, options, futures, spread, swaps

 Swaps, virtual storage, swing gas

 Physical coal, own fleet of vessels

2



What makes it special?

 Asset-backed trading

 Permanent obligation to mark and hedge E.ON‘s asset portfolio

 Physical delivery with hundreds of physical constraints in fuel supply and 

power generation

 Limited liquidity with a significant market share in physical positions

 Simple products like options and forwards

 Complex and structured products like VPP and Swing
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Example: Swing Contract

 Periodic delivery within a given delivery period at a given strike price

 Buyer has the right to exercise nomination at short notice (day ahead)

 Min and max number of exercises

 Min and max volume per sub period (month)

 Min and max volume for the whole period (gas year)

 Coupled American style options – flexible but limited exercise

 Complex optimization problems solved by dynamic or linear programming
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Why QuantLib

 Demand in financial and numerical open source library

 Advanced, mature and tested

 Not reimplementing pricing engines, volatility modelling, Brownian bridge 

and many more
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Why not exclusively QuantLib

 Commodity markets are different

 Additional financial engineering requirements

 Want to leverage functional programming languages

 Access identical logic and underlying market data regardless of client

 Big data, half-hourly profiles or forward curves

 Interacting with pricing engines from ETRM, Excel or just a simple browser

 Access the power and performance of a grid from the desktop

 Agile development
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Technology Stack
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Development Dependencies

eet.apps.quantlib-swig

WebSocket

JSON

OS/Arch dependent dll
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Why Excel-DNA

 Integrating .Net into Excel

 Packaging tool for script files and assemblies to generate a single XLL

 32/64-bit support

 Asynchronous non-blocking calls

 Task-based operations (.Net 4.0)

 Per-call WebSocket using WebSocket4Net

 Message transfer via JSON using Json.NET

 Automatically resizing the result range
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Interacting with WebSockets
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Why WebSockets

 Stateless protocol

 Real-time full-duplex communication (sending and receiving at a time)

 Alternative to long polling or Comet

 Less bandwith usage

 Initial HTTP request with an upgrade request to the WebSocket protocol

 Independent in and out streams

 No request/response cycle

13



Why favouring JavaScript Object Notation

 JSON is a text-based data format for data exchange

 Lightwight – no tags, no attributes, less bandwith-intensive

 Limited data types (strings, numerics, Booleans, arrays, objects, nulls)

 Java and .Net APIs at hand for (de)serialization

 Can be persisted in NoSQL databases like MongoDB
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Continuous Integration – the Plugin
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Continuous Integration – the Plugin
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Continuous Integration – the Plugin
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Why Play

 Full-stack web framework for scala

 Integrated HTTP server, build system and cache

 Asynchronous I/O

 Stateless web application

 Live code and configuration changes

 Remote debugging in single threaded environment

 Type safety

 Build-in support for JSON validation

 Build-in support for WebSockets
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Exposing a WebSocket with Play

 Specifying the routes

 Exposing the WebSocket
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Exposing QuantLib to Play

 SWIG

 Simplified Wrapper and Interface Generator

 Java extension to SWIG writes the Java Native Interface (JNI)

 SWIG wraps C++ code using Java proxy classes

 Embedded 32/64bit dll delivered with the jar file, extraction on the fly

 no need for a separate dll deployment

 QuantLib in a multi-threaded environment

 SWIG/QuantLib Objects are not shared between different threads

 Deregister observer during garbage collection via call back hook

 Thread local singleton pattern
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Continuous Integration - QuantLib
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Continuous Integration - QuantLib
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Continuous Integration - SWIG
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Continuous Integration - SWIG
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Artifactory

 Central artifact repository for local and remote repositories

 Integrates with maven, ivy and NuGet
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Debugging

 Start from VS in debug mode - debug your c# code
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Debugging

 Run play in debug mode

 Attach remote debugger - debug your scala code
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Hands-On

 Pricing a set of vanilla gas options from a spread sheet

 Sending a pricing request from a web browser

 Pricing a vanilla option from LexiFi
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Conclusion

 QuantLib can be integrated into multi-language/architechture system

 High throughput

 Scalable with standard web components

 Continous Integraiton and TDD

 Central pricing server

30



Links and Tutorials

 Principles of Reactive Programming 

https://www.coursera.org/course/reactive

 Functional Programming Principles in Scala

https://www.coursera.org/course/progfun
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